[1] Sun, Fangzheng, Liu, Yang, Wang, JianXun, Sun, Hao. Symbolic Physics Learner: Discovering governing equations via Monte Carlo tree search. The Eleventh International Conference on Learning Representations (ICLR-2023)null. 2023, [2] Sun, Fangzheng, Liu, Yang, Wang, Qi, Sun, Hao. PiSL: Physics-informed Spline Learning for data-driven identification of nonlinear dynamical systems. MECHANICAL SYSTEMS AND SIGNAL PROCESSING[J]. 2023, 191:110165: [3] Peijie Zhang, Pu Ren, Yang Liu, Hao Sun. Autoregressive matrix factorization for imputation and forecasting of spatiotemporal structural monitoring time series. MECHANICAL SYSTEMS AND SIGNAL PROCESSING[J]. 2022, 169: 108718:1-108718:14, [4] Rao, Chengping, Ren, Pu, Liu, Yang, Sun, Hao. Discovering Nonlinear PDEs from Scarce Data with Physics-encoded Learning. THE TENTH INTERNATIONAL CONFERENCE ON LEARNING REPRESENTATIONS (ICLR-22)null. 2022, https://openreview.net/forum?id=Vog_3GXsgmb.[5] Zhao Chen, Yang Liu, Hao Sun. Forecasting of nonlinear dynamics based on symbolic invariance. Computer Physics Communications[J]. 2022, 277: 108382:1-108382:16, https://www.sciencedirect.com/science/article/pii/S0010465522001011.[6] Pu Ren, Chengping Rao, Yang Liu, JianXun Wang, Hao Sun. PhyCRNet: Physics-informed convolutional-recurrent network for solving spatiotemporal PDEs. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING[J]. 2022, 389: 114399:1-114399:21, https://www.sciencedirect.com/science/article/pii/S0045782521006514.[7] Zhao Chen, Yang Liu, Hao Sun. Symbolic deep learning for structural system identification. Journal of Structural Engineering-ASCE[J]. 2022, [8] Lele Luan, Yang Liu, Hao Sun. Distilling governing laws and source input for dynamical systems from videos. The 31st International Joint Conference on Artificial Intelligence (IJCAI-2022)null. 2022, [9] Rao, Chengping, Sun, Hao, Liu, Yang. Physics informed deep learning for computational elastodynamics without labeled data. JOURNAL OF ENGINEERING MECHANICS-ASCE[J]. 2021, 147(8): 04021043:1-04021043:19, [10] Rao, Chengping, Sun, Hao, Liu, Yang. Hard Encoding of Physics for Learning Spatiotemporal Dynamics. International Conference on Learning Representations (ICLR) Workshop on Deep Learning for Simulationnull. 2021, [11] Chen, Zhao, Liu, Yang, Sun, Hao. Physics-informed learning of governing equations from scarce data. NATURE COMMUNICATIONS[J]. 2021, 12(1): 6316:1-6316:13, https://www.nature.com/articles/s41467-021-26434-1.[12] Fangzheng Sun, Yang Liu, Hao Sun. Physics-informed Spline Learning for Nonlinear Dynamics Discovery. The 30th International Joint Conference on Artificial Intelligence (IJCAI-21)null. 2021, https://www.ijcai.org/proceedings/2021/283.[13] Zhang, Ruiyang, Liu, Yang, Sun, Hao. Physics-guided convolutional neural network (PhyCNN) for data-driven seismic response modeling. ENGINEERING STRUCTURES[J]. 2020, 215: 110704:1-110704:13, [14] Zhang, Ruiyang, Liu, Yang, Sun, Hao. Physics-informed multi-LSTM networks for metamodeling of nonlinear structures. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING[J]. 2020, 369: 113226:1-113226:16, [15] Rao, Chengping, Sun, Hao, Liu, Yang. Physics-informed deep learning for incompressible laminar flows. THEORETICAL AND APPLIED MECHANICS LETTERS[J]. 2020, 10(3): 207-212, ?id=7101994175.[16] Rao, Chengping, Liu, Yang. Three-dimensional convolutional neural network (3D-CNN) for heterogeneous material homogenization. COMPUTATIONAL MATERIALS SCIENCE[J]. 2020, 184: 109850:1-109850:12, [17] Meng, QingXiang, Lv, Dandan, Liu, Yang. Mesoscale computational modeling of concrete-like particle-reinforced composites with non-convex aggregates. COMPUTERS & STRUCTURES[J]. 2020, 240: [18] Jiang, Yanhui, Liu, Yang. Effect of Dielectric Imperfections on the Electroactive Deformations of Polar Dielectric Elastomers. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME[J]. 2019, 86(8): 081007:1-081007:7,